113 | 3 | 2 |
下载次数 | 被引频次 | 阅读次数 |
以碳纳米管(carbon nanotubes)为模型吸附剂,在不同pH下,探究不同水合半径和价态的金属离子对邻氯苯甲酸(o-chlorobenzoic acid)吸附的影响机理.结果表明,低pH下,金属离子抑制了CNTs对2-CBA的吸附,抑制作用受离子水合半径的控制;高pH下,金属离子促进了CNTs对2-CBA的吸附,价态越高、水合半径越小的金属离子促进2-CBA吸附的能力越强,反之,促进2-CBA吸附的能力越弱.金属离子与邻氯苯甲酸结合键能的高斯计算结果表明,价态越高、水合半径越小的金属离子与2-CBA之间的键能越大,说明两者相互作用越强.显然,金属离子对2-CBA在CNTs上吸附的影响一方面取决于其带电量,另一方面取决于其水合半径,两者之间的平衡效应可能是决定2-CBA吸附行为的关键.
Abstract:At different pHs, carbon nanotubes(CNTs) were used as model adsorbent to investigate the effect of different hydration radius and valence of metal ions on the adsorption of o-chlorobenzoic acid(2-CBA). The results showed that the adsorption of 2-CBA on CNTs was inhibited by metal ions at low pH. The inhibited adsorption was hydration radius-depended. At high pH, the adsorption of 2-CBA on CNTs was significantly promoted. Those metal ions, with the higher valence and the smaller hydration radius, showed the stronger ability to improve the adsorption of 2-CBA. On the contrary, those metal ions, with the lower valence and the larger hydration radius, had the weaker ability to improve the adsorption of 2-CBA. The binding energy of metal ions and 2-CBA by Gaussian calculation indicated that the interaction between metal ions with the higher valence and the smaller hydration radius and 2-CBA was much stronger than that between metal ions with the lower valence and the larger hydration radius and 2-CBA. This study implied that the adsorption of 2-CBA as affected by metal ions was likely controlled by a balance between the hydration radius and the valence of metal ions.
[1] 胡云,白金泉,王奇昌,等.氯代苯甲酸的合成研究进展[J].广东化工,2006,33(8):35-37.
[2] 刘杰民,范慧俐,李琳,等.新型碳纳米管材料吸附剂性能研究[J].人工晶体学报,2007,36(3):621-626.
[3] Demirbas A.Heavy metal adsorption onto agro-based waste materials:a review[J].Journal of Hazardous Materials,2008,157(2):220-229.
[4] Chen G C,Shan X Q,Wang Y S,et al.Effects of copper,lead,and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes [J].Environmentalence & Technology,2008,42(22):8297-8302.
[5] 王兴琪.复合纳米材料的制备及其对重金属离子和有机污染物的去除[D].济南:齐鲁工业大学,2014.
[6] 王超,刘建明,熊振湖.重金属离子存在下磁性多壁碳纳米管吸附水中抗生素的研究[J].天津城建大学学报,2015(5):351-358.
[7] Wang Z Y,Duan L,Zhu D Q,et al.Effects of Cu(II) and Ni(II) ions on adsorption of tetracycline to functionalized carbon nanotubes[J].Journal of Zhejiang University-SCIENCE A,2014,15(8):653-661.
[8] 于晓冬.碳纳米管的悬浮及其对抗生素类药物的吸附机理研究[D].山东青岛:中国海洋大学,2010.
[9] 曹艳贝.静电作用对离子型有机污染物吸附的控制作用[D].昆明:昆明理工大学,2016.
[10] 李杜.邻氯苯甲酸的分析方法研究[J].湖南师范大学教育科学学报,1995(2):85-88.
[11] 赵金艳,王金生,孙福丽,等.pH值对包气带土壤吸附铅和汞的影响实验[J].水文地质工程地质,2005,32(6):16-19.
[12] Zhang D,Pan B,Wu M,et al.Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions[J].Environmental Pollution,2011,159(10):2616-2621.
[13] 王哲.碳纳米管对磺胺甲恶唑的吸附过程及其机理研究[J].安全与环境学报,2013,13(3):102-106.
[14] 刘苛,龚继来,曾光明,等.磁性多壁碳纳米管吸附亚甲基蓝和铜(Ⅱ)[J].环境工程学报,2016,10(9):4961-4967.
[15] 陈光才.碳纳米管对污染物的吸附[M].北京:化学工业出版社,2013:140.
[16] Koistinen O P,Dagbjartsdóttir F B,ásgeirsson V,et al.Nudged elastic band calculations accelerated with Gaussian process regression [J].Journal of Chemical Physics,2017,147(15),No.152720.
[17] Johnson B G,Gill P M W,Pople J A.The performance of a family of density functional methods[J].Journal of Chemical Physics,1993,98(7):5612-5626.
基本信息:
DOI:10.16112/j.cnki.53-1223/n.2019.04.016
中图分类号:TB383.1;O647.3
引用信息:
[1]张迪,尹基宇,石林等.阳离子对邻氯苯甲酸在碳纳米管上吸附影响机制研究[J].昆明理工大学学报(自然科学版),2019,44(04):110-116.DOI:10.16112/j.cnki.53-1223/n.2019.04.016.
基金信息:
国家自然科学基金项目(41663014);; 云南省中青年学术和技术带头人后备人才项目(2018HB008);; 中国博士后科学基金项目(2017M610615)