nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 05, v.46 100-109
基因编辑技术及其在疾病治疗中的研究进展和应用前景
基金项目(Foundation): 国家卫健委西部孕前优生重点实验室/云南省生育调节与少数民族优生重点实验室开放课题(ZDsys2021007)
邮箱(Email): shih@lpbr.cn;
DOI: 10.16112/j.cnki.53-1223/n.2021.05.252
摘要:

随着生命科学领域的不断发展进步,人们相继开发出锌指核酸酶(zinc-finger nucleases, ZFNs)、转录激活因子样效应物核酸酶(transcription activator-like effector nucleases, TALENs)、规律成簇的间隔短回文重复(clustered regularly interspaced short palindromic repeats, CRISPR)、单碱基编辑(base editing, BE)和先导编辑(prime editing, PE)5种不同的基因编辑技术,为生命医学研究等领域提供了新的解决方案.基因编辑技术已广泛应用于动物疾病模型和植物研究中,并且在遗传性疾病以及非遗传性疾病的治疗中具有很高的应用价值.作者就五种基因编辑技术的发展史、原理以及应用进行综述,系统介绍了基因编辑技术在遗传性疾病和非遗传性疾病治疗中的研究进展,并对该技术面临的脱靶效应等问题及发展前景进行讨论,以期为科研人员在从事基础医学相关研究时提供参考.

Abstract:

With the continuous development and progress of life science, five different gene editing technologies have been developed successively: zinc-finger nucleases(ZFNs), transcription activator-like effector nucleases(TALENs),clustered regularly interspaced short palindromic repeats(CRISPR),base editing(BE)and prime editing(PE). These technologies shed light on life science and other fields. Gene editing technology has been widely used in animal disease model and plant research, and plays an important role in the genetic diseases and non-genetic diseases' treatment. This article reviews the development history, principles and applications of five gene editing technologies, and systematically introduces the research progress of gene editing technologies in the treatment of genetic diseases and non-genetic diseases. Finally, the off-target effects and development prospects of gene editing technology are discussed to provide references for researchers in basic medical research.

参考文献

[1] NGUENGANG WAKAP S,LAMBERT D M,OLRY A,et al.Estimating cumulative point prevalence of rare diseases:analysis of the Orphanet database[J].European Journal of Human Genetics,2020,28(2):165-173.

[2] FRIEDMANN T,ROBLIN R.Gene therapy for human genetic disease?[J].Science,1972,175(4025):949-955.

[3] SCIENCE NEWS STAFF.Breakthrough of the year:The runners-up[J].Science,2012,338(6114):1525-1532.

[4] 牛煦然,尹树明,陈曦,等.基因编辑技术及其在疾病治疗中的研究进展 [J].遗传,2019,41(7):582-598.

[5] HANAS J S,HAZUDA D J,BOGENHAGEN D F,et al.Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene[J].Journal of Biological Chemistry,1983,258(23):14120-14125.

[6] MILLER J,MCLACHLAN A D,KLUG A.Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes[J].The EMBO Journal,1985,4(6):1609-1614.

[7] FAIRALL L,SCHWABE J W R,CHAPMAN L,et al.The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition[J].Nature,1993,366(6454):483-487.

[8] ISALAN M,CHOO Y,KLUG A.Synergy between adjacent zinc fingers in sequence-specific DNA recognition[J].PNAS,1997,94(11):5617-5621.

[9] KIM C A,BERG J M.A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA[J].Nature Structural Biology,1996,3(11):940-945.

[10] PASCHON D E,LUSSIER S,WANGZOR T,et al.Diversifying the structure of zinc finger nucleases for high-precision genome editing[J].Nature Communications,2019,10(1):1133.

[11] URNOV F D,MILLER J C,LEE Y L,et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J].Nature,2005,435(7042):646-651.

[12] COST G J,FREYVERT Y,VAFIADIS A,et al.BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J].Biotechnology and Bioengineering,2010,105(2):330-340.

[13] BIBIKOVA M,GOLIC M,GOLIC K G,et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J].Genetics,2002,161(3):1169-1175.

[14] DOYON Y,MCCAMMON J M,MILLER J C,et al.Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases[J].Nature Biotechnology,2008,26(6):702-708.

[15] LI H,HAURIGOT V,DOYON Y,et al.In vivo genome editing restores haemostasis in a mouse model of haemophilia[J].Nature,2011,475(7355):217-221.

[16] PETOLINO J F,WORDEN A,CURLEE K,et al.Zinc finger nuclease-mediated transgene deletion[J].Plant Molecular Biology,2010,73(6):617-628.

[17] BONAS U,STALL R E,STASKAWICZ B.Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv.vesicatoria[J].Molecular and General Genetics MGG,1989,218(1):127-136.

[18] BOCH J,SCHOLZE H,SCHORNACK S,et al.Breaking the code of DNA binding specificity of TAL-type III effectors[J].Science,2009,326(5959):1509-1512.

[19] MOSCOU M J,BOGDANOVE A J.A simple cipher governs DNA recognition by TAL effectors[J].Science,2009,326(5959):1501.

[20] CHRISTIAN M,CERMAK T,DOYLE E L,et al.Targeting DNA double-strand breaks with TAL effector nucleases[J].Genetics,2010,186(2):757-761.

[21] TONG C,HUANG G Y,ASHTON C,et al.Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs[J].Journal of Genetics and Genomics,2012,39(6):275-280.

[22] LI T,LIU B,SPALDING M H,et al.High-efficiency TALEN-based gene editing produces disease-resistant rice[J].Nature Biotechnology,2012,30(5):390-392.

[23] KE Q,LI W Q,LAI X Q,et al.TALEN-based generation of a cynomolgus monkey disease model for human microcephaly[J].Cell Research,2016,26(9):1048-1061.

[24] 方锐,畅飞,孙照霖,等.CRISPR/Cas9介导的基因组定点编辑技术 [J].生物化学与生物物理进展,2013,40(8):691-702.

[25] ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].Journal of Bacteriology,1987,169(12):5429-5433.

[26] MOJICA F J M,DíEZ-VILLASE?OR C,SORIA E,et al.Biological significance of a family of regularly spaced repeats in the genomes of Archaea,Bacteria and mitochondria[J].Molecular Microbiology,2000,36(1):244-246.

[27] JANSEN R,EMBDEN J D A V,GAASTRA W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Molecular Microbiology,2002,43(6):1565-1575.

[28] GARNEAU J E,DUPUIS M è,VILLION M,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature,2010,468(7320):67-71.

[29] SAPRANAUSKAS R,GASIUNAS G,FREMAUX C,et al.The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli[J].Nucleic Acids Research,2011,39(21):9275-9282.

[30] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.

[31] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.

[32] MALI P,YANG L H,ESVELT K M,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.

[33] YANG H,WANG H Y,SHIVALILA C S,et al.One-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering[J].Cell,2013,154(6):1370-1379.

[34] SPANJAARD B,HU B,MITIC N,et al.Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars[J].Nature Biotechnology,2018,36(5):469-473.

[35] PORT F,BULLOCK S L.Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs[J].Nature Methods,2016,13(10):852-854.

[36] BROOKS C,NEKRASOV V,LIPPMAN Z B,et al.Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 system[J].Plant Physiology,2014,166(3):1292-1297.

[37] NIU Y Y,SHEN B,CUI Y Q,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014,156(4):836-843.

[38] TAN Y Y,CHU A H Y,BAO S Y,et al.Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity[J].PNAS,2019,116(42):20969-20976.

[39] WALTON R T,CHRISTIE K A,WHITTAKER M N,et al.Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J].Science,2020,368(6488):290-296.

[40] ENACHE O M,RENDO V,ABDUSAMAD M,et al.Cas9 activates the p53 pathway and selects for p53-inactivating mutations[J].Nature Genetics,2020,52(7):662-668.

[41] KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424.

[42] GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471.

[43] XIE J K,GE W K,LI N,et al.Efficient base editing for multiple genes and loci in pigs using base editors[J].Nature Communications,2019,10(1):2852.

[44] LI J Y,SUN Y W,DU J L,et al.Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J].Molecular Plant,2017,10(3):526-529.

[45] 宗媛,高彩霞.碱基编辑系统研究进展 [J].遗传,2019,41(9):777-800.

[46] KIM D,LIM K,KIM S T,et al.Genome-wide target specificities of CRISPR RNA-guided programmable deaminases[J].Nature Biotechnology,2017,35(5):475-480.

[47] ZUO E W,SUN Y D,WEI W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J].Science,2019,364(6437):289-292.

[48] JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295.

[49] ZUO E W,SUN Y D,YUAN T L,et al.A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects[J].Nature Methods,2020,17(6):600-604.

[50] ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature,2019,576(7785):149-157.

[51] LIN Q P,ZONG Y,XUE C X,et al.Prime genome editing in rice and wheat[J].Nature Biotechnology,2020,38(5):582-585.

[52] MARON B J.Hypertrophic cardiomyopathy[J].JAMA,2002,287(10):1308-1320.

[53] CARRIER L,MEARINI G,STATHOPOULOU K,et al.Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology[J].Gene,2015,573(2):188-197.

[54] MA H,MARTI-GUTIERREZ N,PARK S W,et al.Correction of a pathogenic gene mutation in human embryos[J].Nature,2017,548(7668):413-419.

[55] WANG L L,KIM K,PARIKH S,et al.Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes[J].Journal of Molecular and Cellular Cardiology,2018,114:320-327.

[56] BEN JEHUDA R,EISEN B,SHEMER Y,et al.CRISPR correction of the PRKAG2 gene mutation in the patient’s induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities[J].Heart Rhythm,2018,15(2):267-276.

[57] MOSQUEIRA D,MANNHARDT I,BHAGWAN J R,et al.CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias,hypocontractility,and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy[J].European Heart Journal,2018,39(43):3879-3892.

[58] LI H,HAURIGOT V,DOYON Y,et al.In vivo genome editing restores haemostasis in a mouse model of haemophilia[J].Nature,2011,475(7355):217-221.

[59] LIANG P P,XU Y W,ZHANG X Y,et al.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J].Protein & Cell,2015,6(5):363-372.

[60] BEATY T H,TAUB M A,SCOTT A F,et al.Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study[J].Human Genetics,2013,132(7):771-781.

[61] LU Y,LIANG M M,ZHANG Q J,et al.Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation,apoptosis and epithelial-mesenchymal transition (EMT)[J].Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease,2019,1865(9):2356-2367.

[62] HOFFMAN J I E.Incidence of congenital heart disease:II.Prenatal incidence[J].Pediatric Cardiology,1995,16(4):155-165.

[63] GIFFORD C A,RANADE S S,SAMARAKOON R,et al.Oligogenic inheritance of a human heart disease involving a genetic modifier[J].Science,2019,364(6443):865-870.

[64] LEE B,LEE K,PANDA S,et al.Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours[J].Nature Biomedical Engineering,2018,2(7):497-507.

[65] 杨春艳,王磊,穆登彩,等.基因编辑技术在疾病治疗中的研究进展 [J].中国生物工程杂志,2019,39(11):87-95.

[66] SEPKOWITZ K A.AIDS—the first 20 years[J].New England Journal of Medicine,2001,344(23):1764-1772.

[67] XU L,WANG J,LIU Y L,et al.CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia[J].The New England Journal of Medicine,2019,381(13):1240-1247.

[68] 中国疾病预防控制中心,国家卫生健康委员会疾病预防控制局.《新型冠状病毒感染的肺炎公众防护指南》(上) [J].昆明理工大学学报(自然科学版),2020,45(3):2,161.

[69] GOOTENBERG J S,ABUDAYYEH O O,LEE J W,et al.Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science,2017,356(6336):438-442.

[70] GOOTENBERG J S,ABUDAYYEH O O,KELLNER M J,et al.Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J].Science,2018,360(6387):439-444.

[71] ZHANG F,ABUDAYYEH O O,GOOTENBERG J S.A Protocol for Detection of COVID-19 Using CRISPR Diagnostics[EB/OL].2020-03-21.https://www.lanzegene.com/2020/07/02/a-protocol-for-detection-of-covid-19-using-crispr-diagnostics/

[72] NGUYEN T M,ZHANG Y,PANDOLFI P P.Virus against virus:a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses[J].Cell Research,2020,30(3):189-190.

[73] SZCZEPEK M,BRONDANI V,BüCHEL J,et al.Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases[J].Nature Biotechnology,2007,25(7):786-793.

[74] CHRISTIAN M,CERMAK T,DOYLE E L,et al.Targeting DNA double-strand breaks with TAL effector nucleases[J].Genetics,2010,186(2):757-761.

[75] MILLER J C,TAN S Y,QIAO G J,et al.A TALE nuclease architecture for efficient genome editing[J].Nature Biotechnology,2011,29(2):143-148.

[76] MILLER J C,HOLEMS M C,WANG J B,et al.An improved zinc-finger nuclease architecture for highly specific genome editing[J].Nature Biotechnology,2007,25(7):778-785.

[77] 许元,金玉翠,乐珅.CRISPR基因编辑的脱靶效应应对策略综述 [J].基因组学与应用生物学,2020,39(6):2921-2929.

[78] STRECKER J,JONES S,KOOPAL B,et al.Engineering of CRISPR-Cas12b for human genome editing[J].Nature Communications,2019,10:212.

[79] CHO S W,KIM S,KIM Y,et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J].Genome Research,2014,24(1):132-141.

[80] YIN H,SONG C Q,SUResh S,et al.Partial DNA-guided Cas9 enables genome editing with reduced off-target activity[J].Nature Chemical Biology,2018,14(3):311-316.

[81] KIM D,KIM D E,Lee G,et al.Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J].Nature Biotechnology,2019,37(4):430-435.

[82] REES H A,KOMOR A C,YEH W H,et al.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J].Nature Communications,2017,8:15790.

[83] JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295.

[84] ZUO E W,SUN Y D,YUAN T L,et al.A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects[J].Nature Methods,2020,17(6):600-604.

基本信息:

DOI:10.16112/j.cnki.53-1223/n.2021.05.252

中图分类号:Q78;R450

引用信息:

[1]邱志超,李卓霏,石宏.基因编辑技术及其在疾病治疗中的研究进展和应用前景[J].昆明理工大学学报(自然科学版),2021,46(05):100-109.DOI:10.16112/j.cnki.53-1223/n.2021.05.252.

基金信息:

国家卫健委西部孕前优生重点实验室/云南省生育调节与少数民族优生重点实验室开放课题(ZDsys2021007)

检 索 高级检索