596 | 15 | 29 |
下载次数 | 被引频次 | 阅读次数 |
钒铝中间合金是生产高性能钛合金的重要中间合金,添加钒铝合金的钛合金具有较高的比强度、优异的耐腐蚀性和抗疲劳性能等.目前我国航空航天级钒铝中间合金制备技术尚不成熟,产品中的合金偏析、杂质含量高仍是规模化生产的关键瓶颈,仍未得到有效解决.本文总结了国内众多的航空航天级钒铝中间合金制备方法研究及现状,从生产工艺、环境和产品质量等方面进行客观的分析,提出了航空航天级钒铝中间合金产业化新技术的研究重点和方向.
Abstract:Vanadium aluminum alloy is an important additive in the production of high performance titanium alloy. Al-V alloy is added to titanium alloy, which gives the titanium alloy a set of excellent properties such as high specific strength, excellent corrosion resistance and fatigue resistance, etc. However, the preparation technology of aerospace grade Al-V intermediate alloy is not mature in our country, and the alloy segregation and high impurity content in the product are still the key bottlenecks of large-scale production, which have not been effectively solved at present. This paper summarizes the research and status of many preparation methods in China, and analyzes objectively from the aspects of production process, environment and product quality, and the emphasis and direction of research on new technology of aerospace grade Al-V intermediate alloy industrialization are put forward.
[1] Chen J, Yan F Y, Chen B B, et al. Assessing the tribocorrosion performance of Ti-6Al-4V, 316 stainless steel and Monel K500 alloys in artificial seawater[J]. Materials and Corrosion, 2013, 64(5):394-401.
[2] Kostov A, ?ivkovi. Thermodynamic study of Ti-V and Al-V systems using FactSage[J]. Journal of Mining and Metallurgy B:Metallurgy, 2006, 42(1):57-65.
[3] Shih W J, Wang S H, Li W L, et al. The phase transition of calcium phosphate coatings deposited on a Ti-6Al-4V substrate by an electrolytic method[J]. Journal of alloys and compounds, 2007, 434:693-696.
[4] Li Y, Chen C, Han T, et al. Microstructures and oxidation behavior of NiCrAlCoY-Al composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method[J]. Journal of Alloys and Compounds, 2017, 697:268-281.
[5] Yajiang L, Juan W, Huiqiang W. XRD and TEM analysis of Fe3Al alloy layer on the surface of the calorized steel[J]. Materials research bulletin, 2001, 36(13-14):2389-2394.
[6] 刘世友. 钒的应用与展望[J]. 稀有金属与硬质合金, 2000, 141(6):58-61.
[7] ZHANG E, WANG X, HAN Y. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. Acta Metall Sin, 2017, 53(12):1555-1567.
[8] Rahmati B, Sarhan A A D, Basirun W J, et al. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2016, 676:369-376.
[9] Liu Y, Wang D, Deng C, et al. Novel method to fabricate Ti-Al intermetallic compound coatings on Ti-6Al-4V alloy by combined ultrasonic impact treatment and electrospark deposition[J]. Journal of Alloys and Compounds, 2015, 628:208-212.
[10] Kurtz R J, Abe K, Chernov V M, et al. Recent progress on development of vanadium alloys for fusion[J]. Journal of nuclear materials, 2004, 329:47-55.
[11] Cheng C, Dou Z H, Zhang T A, et al. Synthesis of as-cast Ti-Al-V alloy from titanium-rich material by thermite reduction[J]. JOM, 2017, 69(10):1818-1823.
[12] 高敬.钛合金用Al-V中间合金的生产研究概况[J].钢铁钒钛, 2001, 1 (22):69-70.
[13] Mishra H, Ghosal P, Nandy T K, et al. Influence of Fe and Ni on creep of near α-Ti alloy IMI834[J]. Materials Science and Engineering:A, 2005, 399(1-2):222-231.
[14] Cai J M, Ma J M, Huang X, et al. Diffusion Behavior of Impurity Iron in High Temperature Titanium Alloys and Its Detrimental Effect on Creep Resistance[J]. Journal of Materials Engineering, 2009(8):84-88.
[15] 陈冬梅, 黄森森, 贺飞, 等. Fe 元素对 TA15 钛合金显微组织和力学性能的影响[J]. 钛工业进展, 2017, 34(2):14-18.
[16] Chen J, Yan F Y, Chen B B, et al. Assessing the tribocorrosion performance of Ti-6Al-4V, 316 stainless steel and Monel K500 alloys in artificial seawater[J]. Materials and Corrosion, 2013, 64(5):394-401.
[17] 刘守平, 鲍俊, 许旭鹏, 等. 钒合金真空精炼过程杂质元素去除研究[J]. 真空科学与技术学报,2016, 7(36):737-741.
[18] 张捷频, 闵新华. 杂质元素N、O、Fe对TA15钛合金性能和组织的影响[J]. 材料开发与应用, 2013, 28(2):83-86.
[19] 闵新华, 秦桂红, 常红英, 等. 杂质成分对TA15钛合金力学性能和微观组织的影响[J]. 上海钢研, 2006(3):38-41.
[20] Holt R T, Wallace W. Impurities and trace elements in nickel-base superalloys[J]. International Metals Reviews, 1976, 21(1):1-24.
[21] 刘金来, 金涛, 张静华,等. 晶体取向对镍基单晶高温合金铸态组织和偏析的影响[J]. 中国有色金属学报, 2002, 12(4):764-768.
[22] Haehn R H. Andorfer H J, Retelsdorf. Production of Master Alloys for the Titanium Industry by the GfE-Two-Step-Process[J]. Metall, 1985, 39(2):126-127.
[23] 林京. 西德电冶公司纽伦堡厂生产概况[J]. 铁合金, 1980(2):51-52.
[24] 杨绍利. 钒钛材料[M]. 北京:冶金工业出版社, 2007.
[25] 尹丹凤,孙朝晖,陈海军,等. 一种宇航级钒铝合金的制备方法:中国,CN103849787A[P].2014-02-26.
[26] 喇培清, 卢学峰, 申达,等. 铝热法制备高钒铝合金的研究[J]. 粉末冶金技术, 2012, 5(30):371-375.
[27] 杨镇松, 韩中祥, 杨英君.一种钒铝合金的制备方法:中国,101906546A[P], 2010-07-14.
[28] Yang J, Okumura K, Kuwabara M, et al. Improvement of desulfurization efficiency of molten iron with magnesium vapor produced In Situ by aluminothermic reduction of magnesium oxide[J]. Metallurgical and Materials Transactions B, 2003, 34(5):619-629.
[29] Agafonov S N, Krasikov S A, Ponomarenko A A, et al. Phase relations in the aluminothermic reduction of ZrO2[J]. Inorganic materials, 2012, 48(8):813-820.
[30] 李建兵. 钒铝合金的生产方法综述[J]. 铁合金, 2017(6):20-22.
[31] 任俊. 片状V2O5制取钒铝合金技术研究[A]. 第三届钒钛微合金化高强钢开发应用技术暨第四届钒产业先进技术交流会议[C],2017:251-255.
[32] 刘志光. 航空航天钛合金用中间合金——钒铝65合金[J]. 钛工业进展, 2014(1):12-14.
[33] 薛群基, 喇培清. 燃烧合成熔化制备块体纳米结构材料和金属间化合物基复合材料及其摩擦学性能[J]. 中国有色金属学报, 2004, 14(S1):128-137.
[34] 喇培清, 王利, 赵阳, 等. 底材厚度对铝热反应熔化制备的块体纳米晶Fe3Al材料的组织和性能的影响[J]. 兰州理工大学学报, 2008, 34(3):5-8.
[35] Jones R T, Barcza N A, Curr T R. Plasma developments in Africa[J]. Journal of Alloys and Compounds, 1993, 8(11):2819.
[36] Dou Z H, Zhang T A, Zhang H B, et al. Preparation of high titanium ferrous with low oxygen content by thermit reduction-SHS[J]. Journal of Central South University, 2012, 6(43):2108-2013.
[37] 李卓然, 冯吉才, 曹健. 自蔓延高温合成连接技术研究进展[J]. 宇航材料工艺, 2004, 34(3):1-4.
[38] 李应泉. 真空自燃烧法生产钒铝中间合金.中国:CN 93100234.6[P].1994-08-03.
[39] 孙诗淋. 航空航天级钒铝中间合金制备工艺研究[D]. 大连:大连理工大学, 2015.
[40] Liu S P, Li J, Lv X W, et al. Temperature Rising Behavior of Oxide Materials Synthesized V-Al Alloy and Slag after Reaction in Microwave Field[J]. Advanced Materials Research, 2011, 393-395:401-406.
[41] Liu S, Li J, Lv X, et al. Synthesis of V-Al alloy by microwave-assisted self-propagating[J]. Metalurgia International, 2011, 16(12):41-47.
[42] Chiu L H, Nagle D C, Bonney L A. Thermal analysis of self-propagating high-temperature reactions in titanium, boron, and aluminum powder compacts[J]. Metallurgical and Materials Transactions A, 1999, 30(3):781-788.
[43] 李进. 微波辅助自蔓延合成钒铝合金的研究[D].重庆:重庆大学, 2012.
[44] 张利波, 王璐, 曲雯雯, 徐盛明,张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 材料导报, 2018, 32(A):772-776.
[45] 李东明, 卢明亮, 万贺利, 等. 电铝热法生产钒铝合金的研究[J]. 河北冶金, 2017 (11):37.
[46] Wan H, Xu B, Wang L, et al. A novel method of AlV55 alloy production by utilizing AlV65 alloy scrap[J]. Vacuum, 2018, 155:127-133.
[47] Nam S E. Studies on Solidification Microstructure and Mechanical Properties of Vanadium-Aluminum Alloys[J]. Journal of Korea Foundry Society, 1991, 11(6):491-497.
[48] Wang P, Guo X, Mao X. Influences of Vanadium Doping on Structure and Performance of Aluminum Alloy Micro-Arc Oxidation Coating[J]. Rare Metal Materials&Engineering, 2014, 43(7):1759-1763.
[49] 陈海军. 两步法制备钒铝合金试验研究[J]. 钢铁钒钛, 2012, 33(6):11-15.
[50] 陈海军, 周芳, 孙朝晖, 等. 钒铝合金真空精炼试验[J]. 有色金属 (冶炼部分), 2014 (8):48-50.
[51] 陈东辉, 李东明, 李九江,等. 电铝热法冶炼钒铝合金的方法.中国:102925722B[P]. 2015-04-15.
[52] 李军, 吴恩辉, 侯静, 等. 电铝热还原法制备钒铝合金的试验研究[J]. 中国有色冶金, 2017, 46(6):29-32.
[53] ZHU M, XING L, FANG H, et al. Progresses in dendrite coarsening during solidification of alloys[J]. Acta Metall Sin, 2018, 54(5):789-800.
[54] Cheng Y. ICP-AES Determination of 15 kinds of impurity elements in the vanadium-aluminum alloy[J]. Procedia Engineering, 2011, 24(8):447-453.
[55] 李天瑞, 曹玲江. ICP-AES法直接测定纯铝及铝合金的杂质元素[J]. 中国有色金属学报, 1994:43-46.
[56] 陈海军. 宇航级钒铝合金脱氮技术探讨[J]. 钢铁钒钛, 2018, 39(4):56-60.
[57] 陈海军, 孙朝晖, 邓孝伯. 宇航级钒铝合金及其制备方法.中国:105755341B[P]. 2016-05-18.
基本信息:
DOI:10.16112/j.cnki.53-1223/n.2019.02.002
中图分类号:V252;TG146.413
引用信息:
[1]万贺利,徐宝强,李东明等.航空航天级钒铝中间合金的国内研究现状[J].昆明理工大学学报(自然科学版),2019,44(02):11-18.DOI:10.16112/j.cnki.53-1223/n.2019.02.002.
基金信息:
国家自然科学基金重点项目(51734006);; 云南省中青年学术技术带头人后备人才项目(2017HB009);; 云南省院士自由探索基金项目(2017HA006)