95 | 0 | 48 |
下载次数 | 被引频次 | 阅读次数 |
高锌复杂物料组成繁杂,含金属锌、铅、锡、铜及氧化锌.针对常规回收工艺存在的能耗高、工艺复杂、污染风险大等问题,基于高锌复杂物料中锡、铜的饱和蒸气压显著低于锌、铅的特征,利用真空冶金的方法,通过真空碳热还原-挥发工艺对高锌复杂物料中锌、铅、锡及铜等有价金属进行同步回收.高锌复杂物料直接真空挥发的实验研究结果表明:在1 100℃、1 Pa、保温2 h条件下,锌和铅挥发率达99%以上,高锌复杂物料中难挥发金属锡、铜留在坩埚底部形成锡铜合金;在直接真空挥发过程中,发现原料中质量分数约20%左右的氧化锌与锌、铅一同挥发并冷凝,导致金属锌回收率低.针对氧化锌与金属锌、铅共挥发问题,进一步开展真空碳热还原-挥发实验,发现在1 100℃、1 Pa、保温2 h、添加10%碳粉的条件下,氧化锌被还原为金属锌,冷凝产物中获得锌铅合金(90%Zn-10%Pb),难挥发金属锡和铜被富集于残留物中形成锡铜合金(62%Sn-36.5%Cu).该工艺实现了锌铅高效回收与锡铜合金富集,为含锌二次资源的短流程清洁高效处理提供了理论和技术参考.
Abstract:High-zinc complex materials are composed of metallic zinc, lead, tin, copper, and zinc oxide.Aiming at the problems of conventional recovery processes, such as high energy consumption, complex procedures, and significant pollution risks, this study utilizes vacuum metallurgy.Based on the characteristic that the saturated vapor pressures of tin and copper in high-zinc complex materials are significantly lower than those of zinc and lead, a vacuum carbothermal reduction-volatilization process was developed to synchronously recover valuable metals(zinc, lead, tin, and copper).Direct vacuum volatilization experiments showed that under the conditions of 1 100 ℃,1 Pa, and 2 hours of heat preservation, the volatilization rates of zinc and lead exceeded 99%.Meanwhile, the hardly volatile metals(tin and copper) remained at the bottom of the crucible to form a tin-copper alloy.Notably, approximately 20% of zinc oxide in the raw material co-volatilized and condensed with zinc and lead during direct vacuum volatilization, leading to low recovery of metallic zinc.To address the co-volatilization of zinc oxide with metallic zinc and lead, further vacuum carbothermal reduction-volatilization experiments were conducted.Results showed that with 10% carbon powder addition under 1 100 ℃,1 Pa, and 2 hours of heat preservation, zinc oxide was reduced to metallic zinc.The condensation product yielded a zinc-lead alloy(90% Zn-10% Pb),while tin and copper were enriched in the residue to form a tin-copper alloy(62% Sn-36.5% Cu).This process enables efficient recovery of zinc and lead and enrichment of tin-copper alloy, providing theoretical and technical references for short-process, clean, and efficient treatment of zinc-containing secondary resources.
[1] MASCENIK J,CORANIC T,KUCHAR J,et al.Influence of selected parameters of zinc electroplating on surface quality and layer thickness[J].Coatings,2024,14(5):579.
[2] KELLAMIS C J,WAINRIGHT J S.A zinc-iodine hybrid flow battery with enhanced energy storage capacity[J].Journal of Power Sources,2024,589:233753.
[3] WANG D W,JIANG X S,CHEN C X,et al.Adjustable corrosion and mechanical properties of Mg-Zn-Ca-Ni alloys for fracturing materials[J/OL].Journal of Magnesium and Alloys,2024[2025-02-16].https://www.sciencedirect.com/science/article/pii/S2213956724002500JHJabs0001.
[4] 李兴彬,邓志敢.锌冶金学[M].长沙:中南大学出版社,2024.
[5] 冯均利,何宏平,薛亚,等.典型再生氧化锌富集物的来源与分析鉴别综述[J].冶金分析,2024,44(11):34-44.FENG J L,HE H P,XUE Y,et al.Review on the source,analysis,and identification of typical regenerated zinc oxide concentrates[J].Metallurgical Analysis,2024,44(11):34-44.
[6] WANG F K,XU B Q,YANG B,et al.The lead removal evolution from hazardous waste cathode ray tube funnel glass under enhancement of red mud melting and synthesizing value-added glass-ceramics via reutilization of silicate resources[J].Journal of Hazardous Materials,2022,429:128334.
[7] WANG F K,XU B Q,YANG B,et al.Pb recovery of waste cathode ray tube funnel glass by PbO vapor vacuum reduction (PVVR) process and the feasibility of luminescent glass production[J].Metallurgical and Materials Transactions B,2021,52(4):2294-2306.
[8] 蒋文龙,杨斌,戴永年.从火法炼锌炉底积铁中回收银和铟的研究[J].昆明理工大学学报(自然科学版),2014,39(3):1-4+19.JIANG W L,YANG B,DAI Y N.Investigation of recovering Ag and In from slag in zinc pyrometallurgy[J].Journal of Kunming University of Science and Technology (Natural Science),2014,39(3):1-4+19.
[9] 徐宏凯,张少广,张国华,等.火法炼锌技术[M].北京:冶金工业出版社,2019:7-12.
[10] TANG L,TANG C B,XIAO J,et al.A cleaner process for valuable metals recovery from hydrometallurgical zinc residue[J].Journal of Cleaner Production,2018,201:764-773.
[11] 魏烈旭,刘生长.奥斯麦特熔炼炉+富氧侧吹还原炉搭配处理锌浸出渣的设计[J].中国有色冶金,2020,49(2):21-24.WEI L X,LIU S Z.Design of smelting zinc leaching residue using ausmelt smelting furnace and oxygen-enriched side-blown furnace[J].China Nonferrous Metallurgy,2020,49(2):21-24.
[12] 邓志敢,王希希,林文军,等.湿法炼锌浸出过程铜铁的浸出与沉淀行为[J].昆明理工大学学报(自然科学版),2024,49(3):34-41.DENG Z G,WANG X X,LIN W J,et al.Behavior of leaching and precipitation of copper and iron in the leaching process of hydrometallurgy zinc[J].Journal of Kunming University of Science and Technology (Natural Science),2024,49(3):34-41.
[13] 保雪凡,张程,邓志敢,等.湿法炼锌过程铜回收率提升工艺研究[J].中南大学学报(自然科学版),2023,54(12):4652-4661.BAO X F,ZHANG C,DENG Z G,et al.Process of improving copper recovery rate in zinc hydrometallurgy[J].Journal of Central South University (Science and Technology),2023,54(12):4652-4661.
[14] YE F,LI M T,SU S,et al.Separation and recovery of zinc from blast furnace dust via coordination leaching of Cl-and hydrolysis of NH+4[J].Separation and Purification Technology,2024,330:125361.
[15] 李建福,林琳,陈翠萍,等.湿法炼锌钴镍渣综合回收的试验研究[J].云南冶金,2024,53(4):104-108.LI J F,LIN L,CHEN C P,et al.Experimental study of comprehensive recovery of cobalt-nickel slag in zinc hydro-metallurgy[J].Yunnan Metallurgy,2024,53(4):104-108.
[16] 杨斌,徐宝强.真空冶金学[M].长沙:中南大学出版社,2021.
[17] QI J F,ZHAO Y,ZHA G Z,et al.Measurement and effect of volatilization kinetic parameters in the production of high-purity zinc by vacuum distillation[J].Vacuum,2023,208:111730.
[18] 何璇.真空碳热还原含锌粉尘过程中锌、铅挥发冷凝机制研究[D].贵阳:贵州大学,2022.HE X.The volatilization and condensation mechanism of Zn and Pb in zinc-containing dust by vacuum carbothermal reduction[D].Guiyang:Guizhou University,2022.
[19] 张丁川,邓勇,杨斌,等.真空热还原氧化锌的理论分析及实验研究[C]//中国真空学会真空冶金专业委员会,中国真空学会真空工程专业委员会,中国真空学会真空咨询工作委员会,沈阳《真空》杂志社.第十二届国际真空冶金与表面工程学术会议论文(摘要)集,2015:179.ZHANG D C,DENG Y,YANG B,et al.Theoretical and experimental studies of vacuum reduction of zinc-oxide[C]//Vacuum Metallurgy Professional Committee of the Chinese Vacuum Society,Vacuum Engineering Professional Committee of the Chinese Vacuum Society,Vacuum Consulting Working Committee of the Chinese Vacuum Society,Shenyang Vacuum Magazine.Proceedings of the 12th International Conference on Vacuum Metallurgy and Surface Engineering,2015:179.
[20] 游彦军.铅基合金真空蒸馏分离动力学研究[D].昆明:昆明理工大学,2022.
[21] JI W T,XIE K Q,YAN S Y.Separation and recovery of heavy metals zinc and lead from phosphorus flue dust by vacuum metallurgy[J].Journal of Environmental Management,2021,294:113001.
[22] DENG X,HUANG R,LV X D,et al.Separation and recovery of metallic zinc and iron concentrate from blast furnace dust by vacuum carbothermal reduction[J].Process Safety and Environmental Protection,2022,162:746-751.
[23] 谭艳芝,李良,丘克强,等.废锌锰电池中锌的真空回收处理[J].电源技术,2006,30(3):213-216.TAN Y Z,LI L,QIU K Q,et al.Recycling zinc in waste zinc-manganese cells at vacuum[J].Chinese Journal of Power Sources,2006,30(3):213-216.
[24] 韩继标,保宇程,李一夫,等.真空分离法分离Sn-Zn合金粉[J].过程工程学报,2017,17(4):732-738.HAN J B,BAO Y C,LI Y F,et al.Separation of tin and zinc from tin-zinc alloy powders by vacuum distillation[J].The Chinese Journal of Process Engineering,2017,17(4):732-738.
[25] LIN Y B,LEI Y B,LV X D,et al.Phase transformation characteristics of the ZnO-Fe2O3 system in zinc-containing electric furnace dust during vacuum carbothermal reduction[J].Journal of Sustainable Metallurgy,2025:1063.
基本信息:
DOI:10.16112/j.cnki.53-1223/n.2025.04.401
中图分类号:TF803
引用信息:
[1]徐宝强,左子斌,杨斌等.高锌物料真空还原-挥发回收金属锌铅及富集锡铜合金的研究[J].昆明理工大学学报(自然科学版),2025,50(04):1-10.DOI:10.16112/j.cnki.53-1223/n.2025.04.401.
基金信息:
第八批国家“万人计划”科技创新领军人才项目(KKEC202452002)