nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.50 26-34+128
MnO-Ru/NFs电催化剂的制备及其析氧性能研究
基金项目(Foundation): 国家自然科学基金项目(12364044); 云南省科技计划项目(202303AK140022); 云南省重大科技专项(202402AG050008); 云南贵金属实验室科技计划项目(YPML-20240502003)
邮箱(Email): yujieone@163.com;
DOI: 10.16112/j.cnki.53-1223/n.2025.04.412
摘要:

电解水制氢的动力学过程较为缓慢,限制了其在氢能产业中的应用.通过调控活性位点的电子结构,从而优化反应中间体的吸附能,是一种提升电解水析氧反应(Oxygen Evolution Reaction, OER)性能的有效途径.采用静电纺丝-碳化方法,制备了一种高度分散的小尺寸Ru纳米颗粒与MnO协同作用的MnO-Ru/NFs催化剂,并对该催化剂的形貌结构、物相组成、过电位、电化学阻抗、塔菲尔斜率、稳定性进行了测试和分析.电化学性能测试表明,MnO-Ru/NFs催化剂在1 mol/L KOH溶液中表现出优异的OER催化活性(265 mV@10 mA/cm2,396 mV@500 mA/cm2)和耐久性(50 h@100 mA/cm2).本研究为开发一种新型高效、低成本的碱性电解水析氧催化剂提供了重要的实验基础和实际应用潜力.

Abstract:

The slower reaction kinetics of hydrogen production from electrolyzed water limits its application in the hydrogen industry.Optimizing the electronic structure of active sites and the adsorption energy of reaction intermediates is an effective way to enhance the performance of water electrolysis oxygen evolution reaction.In this paper, the highly dispersed small-sized Ru nanoparticles coupled with MnO(MnO-Ru/NFs) catalyst were synthesized via an electrospinning-carbonization method, and its morphological structure, physical phase composition, overpotential, electrochemical impedance, Tafel slope, and stability are tested and analyzed.Electrochemical performance test results indicate that the MnO-Ru/NFs catalysts exhibit excellent OER catalytic activity(265 mV@10 mA/cm2,396 mV@500 mA/cm2) performance and durability(50 h@100 mA/cm2) in 1 mol/L KOH solution.This research provides an important experimental basis and practical application potential for the development of new, efficient, and low-cost alkaline water electrolysis oxygen evolution catalysts.

参考文献

[1]FRANCO A,GIOVANNINI C.Recent and future advances in water electrolysis for green hydrogen generation:Critical analysis and perspectives[J].Sustainability,2023,15(24):16917.

[2]LIU S J,WEI Y,WANG M K,et al.The future of alkaline water splitting from the perspective of electrocatalysts-seizing today’s opportunities[J].Coordination Chemistry Reviews,2025,522:216190.

[3]CHEN X J,GOU W Q,XU J Q,et al.Low-loading and ultrasmall Ir nanoparticles coupled with Ni/nitrogen-doped carbon nanofibers with Pt-like hydrogen evolution performance in both acidic and alkaline media[J].Chemical Engineering Journal,2023,471:144481.

[4]HAN Y,DUAN H L,LIU W,et al.Engineering the electronic structure of platinum single-atom sites via tailored porous carbon nanofibers for large-scale hydrogen production[J].Applied Catalysis B:Environmental,2023,335:122898.

[5]CHEN X,WANG X T,LE J B,et al.Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction[J].Nature Communications,2023,14(1):5289.

[6]JIANG Z L,SONG S J,ZHENG X B,et al.Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2production[J].Journal of the American Chemical Society,2022,144(42):19619-19626.

[7]WEN N,DUAN X X,CHAI R Y,et al.Dual confinement of RuOx nanoparticle using polar MnNiO and armored carbon for boosting water electrolysis[J].Applied Catalysis B:Environment and Energy,2024,359:124504.

[8]DAO V,CHOI H,YADAV S,et al.LaCeOx coupled N-doped graphene/Ru single-atoms as a binary-site catalyst for efficient hydrogen evolution based on hydrogen spillover[J].Applied Catalysis B:Environmental,2024,343:123452.

[9]RHO Y J,LEE C,KIM M,et al.Symmetric catalyst design employing Ir nanoparticles on black WO3-xnanofiber support for boosting water electrolysis[J].Small,2024,20(29):e2401858.

[10]LI W M,LIU R,YU G T,et al.Rationally construction of Mn-doped RuO2nanofibers for high-activity and stable alkaline ampere-level current density overall water splitting[J].Small,2024,20(15):e2307164.

[11]LIU H B,JIA Q H,HUANG S Q,et al.Ultra-small Ru nanoparticles embedded on Fe-Ni(OH)2nanosheets for efficient water splitting at a large current density with long-term stability of 680 hours[J].Journal of Materials Chemistry A,2022,10(9):4817-4824.

[12]DEMIRAL I·,SAMDAN C,DEMIRAL H.Enrichment of the surface functional groups of activated carbon by modification method[J].Surfaces and Interfaces,2021,22:100873.

[13]YANILMAZ M,ABDOLRAZZAGHIAN E,CHEN L,et al.Flexible centrifugally spun PVP based SnO2@carbon nanofiber electrodes[J].2023,11(9):091106.

[14]DONG L T,WANG G W,LI X F,et al.PVP-derived carbon nanofibers harvesting enhanced anode performance for lithium ion batteries[J].RSC Advances,2016,6(5):4193-4199.

[15]HAVIGH R S,CHENARI H M.Preparation and characterization study of γ-Fe2O3/carbon composite nanofibers:Electrospinning of composite fibers using PVP and iron nitrate as precursors[J].Physical Chemistry Chemical Physics,2023,25(12):8684-8691.

[16]SRIKANTH C S,KUMAR V P,VISWANADHAM B,et al.Vapor phase hydrogenation of nitrobenzene to aniline over carbon supported ruthenium catalysts[J].Journal of Nanoscience and Nanotechnology,2015,15(7):5403-5409.

[17]HAO M D,LI Q,SUN J H,et al.Polyphenol-metal coordination derived high-entropy alloy as bifunctional oxygen electrocatalyst for Zn-air batteries[J].Rare Metals,2025,44(4):2836-2844.

[18]ZHAO C F,WANG J,GAO Y,et al.D-orbital manipulated Ru nanoclusters for high-efficiency overall water splitting at industrial-level current densities[J].Advanced Functional Materials,2024,34(7):2307917.

[19]HE H B,ZENG L B,PENG X Y,et al.Porous cobalt sulfide nanosheets arrays with low valence copper incorporated for boosting alkaline hydrogen evolution via lattice engineering[J].Chemical Engineering Journal,2023,451:138628.

[20]HE H B,XIAO J Y,LIU Z B,et al.Boosting the hydrogen evolution of layered double hydroxide by optimizing the electronic structure and accelerating the water dissociation kinetics[J].Chemical Engineering Journal,2023,453:139751.

[21]ZHAO W X,LIU Y R,FU X G,et al.Materials engineering toward durable Ru-based electrocatalysts for acidic oxygen evolution reaction[J].Renewables,2023,1(6):638-667.

[22]ZHANG H,WU B,SU J W,et al.MOF-derived zinc-doped ruthenium oxide hollow nanorods as highly active and stable electrocatalysts for oxygen evolution in acidic media[J].ChemNanoMat,2021,7(2):117-121.

[23]LI T F,LU T Y,ZHONG H Y,et al.Atomically dispersed V-O2N3sites with axial V-O coordination on multichannel carbon nanofibers achieving superior electrocatalytic oxygen evolution in acidic media[J].Advanced Energy Materials,2023,13(3):2203274.

[24]ZHANG C X,SONG H H,WANG Z C,et al.Titanium dioxide and N-doped carbon hybrid nanofiber modulated Ru nanoclusters for high-efficient hydrogen evolution reaction electrocatalyst[J].Small,2024,20(32):e2311667.

[25]WANG K X,WANG Y L,YANG B,et al.Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis[J].Energy&Environmental Science,2022,15(6):2356-2365.

[26]RODRíGUEZ-GARCíA I,GóMEZ DE LA FUENTE J L,TORRERO J,et al.NdMn1.5Ru0.5O5,a high-performance electrocatalyst with low Ru content for acidic oxygen evolution reaction[J].Journal of Power Sources,2024,604:234416.

[27]LYONS M E G,DOYLE R L.Oxygen evolution at oxidised iron electrodes:A tale of two slopes[J].International Journal of Electrochemical Science,2012,7(10):9488-9501.

[28]SHINAGAWA T,GARCIA-ESPARZA A T,TAKANABE K.Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J].Scientific Reports,2015,5:13801.

[29]SUEN N T,HUNG S F,QUAN Q,et al.Electrocatalysis for the oxygen evolution reaction:Recent development and future perspectives[J].Chemical Society Reviews,2017,46(2):337-365.

[30]WANG X M,ZHANG K,XIE Y H,et al.MnOxHy-modified CoMoP/NF nanosheet arrays as hydrogen evolution reaction and oxygen evolution reaction bifunctional catalysts under alkaline conditions[J].Dalton Transactions,2023,52(41):15091-15100.

[31]GUAN J L,LI C F,ZHAO J W,et al.FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting[J].Applied Catalysis B:Environmental,2020,269:118600.

[32]SUN S,WANG T C,QIAN K J,et al.Tailoring cation vacancies in Co,Ni phosphides for efficient overall water splitting[J].International Journal of Hydrogen Energy,2022,47(94):39731-39742.

[33]ZHANG L T,WEI H H,LI H,et al.One-step electrodeposited FeCoW hydroxide as a superior and durable catalyst for electrocatalytic water oxidation[J].International Journal of Hydrogen Energy,2023,48(65):25390-25397.

[34]LI T T,WAN W,CAO Y L,et al.Co2P2O7@MoO3/NF composite electrocatalysts by different phosphorus sources for efficient oxygen evolution reaction and overall water splitting[J].Colloid and Interface Science Communications,2023,55:100727.

[35]TRAN P K L,TRAN D T,MALHOTRA D,et al.Highly effective freshwater and seawater electrolysis enabled by atomic Rhmodulated Co-CoO lateral heterostructures[J].Small,2021,17(50):e2103826.

[36]YANG X H,LI Z K,YANG Z K,et al.MOF-derived N-doped CoNi@C as bifunctional catalysts for efficient water splitting[J].Catalysis Science&Technology,2024,14(23):6814-6823.

[37]SU Q H,SHENG R,LIU Q C,et al.Surface reconstruction of RuO2/Co3O4amorphous-crystalline heterointerface for efficient overall water splitting[J].Journal of Colloid and Interface Science,2024,658:43-51.

[38]ZHU C R,WANG A L,XIAO W,et al.In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting[J].Advanced Materials,2018,30(13):e1705516.

[39]LIU H,XI C,XIN J H,et al.Free-standing nanoporous NiMnFeMo alloy:An efficient non-precious metal electrocatalyst for water splitting[J].Chemical Engineering Journal,2021,404:126530.

[40]MOTTAKIN M,SELVANATHAN V,RAZALI S A,et al.Facile electrodeposition of biphasic CuSx/CoSx nanostructures as bifunctional electrocatalysts for seawater splitting[J].Electrochimica Acta,2023,463:142861.

[41]BI M Q,GUO Z G,LIU Z X,et al.Efficient and stable electrocatalytic performances of nanostructured composite of CuO and Co2P in the full pH range towards hydrogen and oxygen evolution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,673:131802.

[42]FU W Y,LIN Y X,WANG M S,et al.Sepaktakraw-like catalyst Mn-doped CoP enabling ultrastable electrocatalytic oxygen evolution at 100mA·cm-2in alkali media[J].Rare Metals,2022,41(9):3069-3077.

[43]WEI Y S,ZHANG M,KITTA M,et al.A single-crystal open-capsule metal-organic framework[J].Journal of the American Chemical Society,2019,141(19):7906-7916.

基本信息:

DOI:10.16112/j.cnki.53-1223/n.2025.04.412

中图分类号:TQ116.21;TQ426

引用信息:

[1]熊园园,龙庆荣,吴彤等.MnO-Ru/NFs电催化剂的制备及其析氧性能研究[J].昆明理工大学学报(自然科学版),2025,50(04):26-34+128.DOI:10.16112/j.cnki.53-1223/n.2025.04.412.

基金信息:

国家自然科学基金项目(12364044); 云南省科技计划项目(202303AK140022); 云南省重大科技专项(202402AG050008); 云南贵金属实验室科技计划项目(YPML-20240502003)

检 索 高级检索