nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 06, v.46 24-36
航空航天高温结构材料研究现状及展望
基金项目(Foundation): 国家自然科学基金重大研究计划项目(91960103); 云南省重大科技专项基金-稀贵金属材料基因工程(202002AB080001-1)
邮箱(Email): chongxiaoyu007@163.com;
DOI: 10.16112/j.cnki.53-1223/n.2021.06.422
摘要:

高温结构材料对航空航天装备的发展至关重要.论述了镍基高温合金、钴基高温合金、高温金属间化合物、Mo-Si-B、难熔金属及难熔高熵合金、贵金属高温合金等几类最重要的高温结构材料研究现状,并从两个角度思考高温合金材料的发展趋势:(1)通过高稳定性的高温低导热涂层来提高材料的最高承温能力;(2)从化学键合本质上寻找本征更耐高温的材料,并改进其抗氧化性能和加工性能,如难熔碳/硼/氮化物及其复合材料等.对未来高温结构材料的发展方向进行了梳理,并为航空航天高温结构材料的研究提供参考.

Abstract:

High-temperature structural materials are essential to the development of aerospace equipment. This article discusses the research status of the most important high-temperature structural materials such as nickel-based superalloys, cobalt-based superalloys, high-temperature intermetallic compounds, Mo-Si-B, refractory and refractory high entropy alloys, and precious metal superalloys. The development trend of high-temperature materials is proposed. One is to increase the maximum high temperature resistance through stable and low thermal conductivity coating. The second is to find more inherently high temperature resistant materials from the nature of chemical bonding, and improve their oxidation resistance and processing properties, such as refractory carbon/boron/nitride compounds and their composites. This paper summarizes and provides the guidance for the future development of high-temperature structural materials.

参考文献

[1] 李承昊.航空发动机用高温合金材料的应用及发展情况 [J].中国战略新兴产业,2017(44):60.

[2] HUDA Z,EDI P.Materials selection in design of structures and engines of supersonic aircrafts:a review[J].Materials & Design,2013,46:552-560.

[3] 刘克伟,于杰,周晓龙,等.超高温结构材料的研究进展 [J].热加工工艺,2016,45(10):10-14.

[4] SOBOYEJO W O,SRIVATSAN T S.Advanced structural materials properties:design optimization,and applications[M].Florida:CRC Press,2006:6-7.

[5] 王会阳,安云岐,李承宇,等.镍基高温合金材料的研究进展 [J].材料导报,2011,25(S2):482-486.

[6] 黄乾尧,李汉康.高温合金 [M].北京:冶金工业出版社,2000.

[7] 唐中杰,郭铁明,付迎,等.镍基高温合金的研究现状与发展前景 [J].金属世界,2014(1):36-40.

[8] OUYANY G Y.High temperature structure materials beyond nickel base superalloy [J].Journal of Materials Science and Nanomaterials,2017,1(2):1-2.

[9] 颜鸣皋,陈学印.镍基高温合金的强化 [J].金属学报,1964(3):307-321.

[10] DAVIS J R.Introduction to Nickel and Nickel Alloys,Nickel,cobalt,and their alloys[M].OH:ASM International,2000.

[11] 都贝宁,盛立远,赖琛,等.一种镍基高温合金蠕变过程中碳、硼化物的演变行为及结构表征 [J].稀有金属材料与工程,2017,46(8):2123-2129.

[12] 刘芳.镍基高温合金的制备及性能研究 [D].赣州:江西理工大学,2016.

[13] 赵越,杨功显,袁超,等.铸造镍基高温合金K447的高温氧化行为 [J].腐蚀科学与防护技术,2007,19(1):1-4.

[14] 李楠,金涛,刘金来,等.热处理对一种镍基单晶高温合金高温蠕变性能的影响 [J].稀有金属材料与工程,2008,37(5):789-793.

[15] KOIZUMI Y,OSAWA M,KOBAYASHI T,et al.Development of next-generation Ni-base single crystal superalloys[C]//Superalloys 2004 (Tenth International Symposium),September 19-23,2004.TMS,2004:35-43.

[16] LEMBERG J A,RITCHIE R O.Mo-Si-B alloys for ultrahigh-temperature structural applications[J].Advanced Materials,2012,24(26):3445-3480.

[17] POLLOCK T M.Alloy design for aircraft engines[J].Nature Materials,2016,15(8):809-815.

[18] MURAKUMO T,KOIZUMI Y,KOBAYASHI K,et al.Creep strength of Ni-base single-crystal superalloys on the γ/γ′ Tie-line[C]//Superalloys 2004 (Tenth International Symposium).September 19-23,2004,TMS,2004:155-162.

[19] LIU X G,WANG L,LOU L H,et al.Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J].Journal of Materials Science& Technology,2015,31(2):143-147.

[20] 谢锡善.我国高温材料的应用与发展 [J].机械工程材料,2004,28(1):2-8,11.

[21] DIMIDUK D M,PEREPEZKO J H.Mo-Si-B alloys:developing a revolutionary turbine-engine material[J].MRS Bulletin,2003,28(9):639-645.

[22] KURT P.ROHRBACH.高温合金的发展与选择 [J].宇航材料工艺,2005,35(1):61-62.

[23] SIMS C T,STOLOFF N S,HAGEL W C,et al.SuperalloysII[M].New York John Wiley & Sons,Inc,1987.

[24] 刘健.元素对γ’沉淀强化型钴基高温合金组织及力学性能的影响 [D].合肥:中国科学技术大学,2019.

[25] SATO J.Cobalt-base high-temperature alloys[J].Science,2006,312(5770):90-91.

[26] SATO J,OIKAWA K,KAINUMA R,et al.Experimental verification of magnetically induced phase separation in αCo phase and thermodynamic calculations of phase equilibria in the Co-W system[J].Materials Transactions,2005,46(6):1199-1207.

[27] STOLOFF N S.In Metals Handbook[M].ASM International,1990.

[28] RAGHAVAN V.Al-Co-Ni (aluminum-cobalt-nickel)[J].Journal of Phase Equilibria & Diffusion,2006,27(4):372-380.

[29] 刘兴军,陈悦超,卢勇,等.新型钴基高温合金多尺度设计的研究现状与展望 [J].金属学报,2020,56(1):1-20.

[30] SUZUKI A,POLLOCK T M.High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys[J].Acta Materialia,2008,56(6):1288-1297.

[31] KLEIN L,SHEN Y,KILLIAN M S,et al.Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys[J].Corrosion Science,2011,53(9):2713-2720.

[32] KLEIN L,VON BARTENWERFFER B,KILLIAN M S,et al.The effect of grain boundaries on high temperature oxidation of new γ′-strengthened Co-Al-W-B superalloys[J].Corrosion Science,2014,79:29-33.

[33] SIMS C T,STOLOFF N S,HAGEL W C.Superalloys II[M].New York:John Wiley & Sons,Inc,1987.

[34] DAVIS J R.Introduction to cobalt and cobalt alloys,Nickel,cobalt,and their alloys—ASM Specialty Handbook[M].OH:ASM International,2000:343-406.

[35] 宫声凯,尚勇,张继,等.我国典型金属间化合物基高温结构材料的研究进展与应用 [J].金属学报,2019,55(9):1067-1076.

[36] 张继,仲增墉,CHANGHAI LI.TiAl和Mo5Si3金属间化合物基高温结构材料及其合金化研究 [J].材料导报,2000,14(2):22-24.

[37] 胡萍.结构金属间化合物的国内外研究分析及其超塑性的研究 [D].长春:吉林大学,2004.

[38] CHEN G,PENG Y,ZHENG G,et al.Polysynthetic twinned TiAl Single crystals for higt-temperature applications[J].Nature Materials,2016,15(8):876-881.

[39] 钱九红,祁学忠.TiAl(γ)基钛合金的研究与应用 [J].稀有金属,2002,26(6):477-482.

[40] SCHUTZE M.High-temperature alloys:Single-crystal performance boost[J].Nature Materials,2016,15(8):823-824.

[41] JOHNSON D R,INUI H,YAMAGUCHI M.Directional solidification and microstructural control of the TiAlTi3Al lamellar microstructure in TiAl-Si alloys[J].Acta Materialia,1996,44(6):2523-2535.

[42] PEREPEZKO J H.The hotter the engine,the better[J].Science,2009,326(5956):1068-1069.

[43] 尹梦姣,孙志平,李倩,等.合金化元素对Nb-Si基超高温合金微观组织和性能的影响 [J].铸造技术,2017,38(8):1796-1799,1804.

[44] 郑蕾,贾丽娜,张虎,等.Nb-Si基超高温合金的研究进展 [J].宇航材料工艺,2013,43(3):12-18.

[45] ZHANG S,GUO X P.Alloying effects on the microstructure and properties of Nb-Si based ultrahigh temperature alloys[J].Intermetallics,2016,70:33-44.

[46] 郑鹏,沙江波,刘东明,等.Hf对Nb-15W-5Si-2B合金室温和高温力学性能的影响 [J].航空学报,2008,29(1):227-232.

[47] GUO J T,SHENG L Y,TIAN Y X,et al.Effect of Ho on the microstructure and compressive properties of NiAl-based eutectic alloy[J].Materials Letters,2008,62(23):3910-3912.

[48] DAROLIA R,WALSTON W S,NATHAL M V.Nial alloys for turbine airfoils[C]//Superalloys 1996 (Eighth International Symposium),September 22-26,1996.TMS,1996:561-570.

[49] 刘应超,刘志国.Mo-Si-B合金的制备及性能研究现状 [J].金属功能材料,2009,16(3):56-61.

[50] 张来启,黄永安,林均品.Mo-Si-B三元系金属间化合物超高温结构材料研究进展 [J].南京航空航天大学学报,2016,48(1):1-9.

[51] SCHNEIBEL J H,KRAMER M J,üNAL?,et al.Processing and mechanical properties of a molybdenum silicide with the composition Mo-12Si-8.5B (at.%)[J].Intermetallics,2001,9(1):25-31.

[52] MEYER M K,KRAMER M J,AKINCA M.Compressive creep behavior of Mo5Si3 with the addition of boron[J].Intermetallics,1996,4(4):273-281.

[53] PAN K,LIU W,ZHANG L,et al.Deformation behavior of Mo5SiB2 at elevated temperatures[J].Materials Science and Engineering:A,2015,623:124-132.

[54] WANG F,SHAN A,DONG X,et al.Oxidation behavior of multiphase Mo5SiB2 (T2)-based alloys at high temperatures[J].Transactions of Nonferrous Metals Society of China,2007,17(6):1242-1247.

[55] MEYER M K,AKINC M.Oxidation behavior of boron-modified Mo5Si3 at 800°-1300 ℃[J].Journal of the American Ceramic Society,1996,79(4):938-944.

[56] SCHNEIBEL J H,RITCHIE R O,KRUZIC J J,et al.Optimization of Mo-Si-B intermetallic alloys[J].Metallurgical and Materials Transactions A,2005,36(3):525-531.

[57] LIU L,SHI C,ZHANG C,et al.Microstructure,microhardness and oxidation behavior of Mo-Si-B alloys in the Moss+Mo2B+Mo5SiB2 three phase region[J].Intermetallics,2020,116:106618.

[58] SCHNEIBEL J H,LIU C T,EASTON D S,et al.Microstructure and mechanical properties of Mo-Mo3Si-Mo5SiB2 silicides[J].Materials Science and Engineering:A,1999,261(1/2):78-83.

[59] PASWAN S,MITRA R,ROY S K.Oxidation behaviour of the Mo-Si-B and Mo-Si-B-Al alloys in the temperature range of 700-1300 ℃[J].Intermetallics,2007,15(9):1217-1227.

[60] SOSSAMAN T,SAKIDJA R,PEREPEZKO J H.Influence of minor Fe addition on the oxidation performance of Mo-Si-B alloys[J].Scripta Materialia,2012,67(11):891-894.

[61] AJUMDAR S,SCHLIEPHAKE D,GORR B,et al.Effect of yttrium alloying on intermediate to high-temperature oxidation behavior of Mo-Si-B alloys[J].Metallurgical and Materials Transactions A,2013,44(5):2243-2257.

[62] MAJUMDAR S,BURK S,SCHLIEPHAKE D,et al.A study on effect of reactive and rare earth element additions on the oxidation behavior of Mo-Si-B system[J].Oxidation of Metals,2013,80(3/4):219-230.

[63] YANG T,GUO X P.Oxidation behavior of Zr-Y alloyed Mo-Si-B based alloys[J].International Journal of Refractory Metals and Hard Materials,2020,88:105200.

[64] 胡德昌,胡滨.航天航空用新材料:难熔金属及其合金 [J].航天工艺,1996(3):34-40.

[65] 琚印超,刘小勇,王琴,等.难熔金属研究进展及在航天领域的应用情况[C]// 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——材料、工艺与制造技术.2017.

[66] 郑欣,白润,王东辉,等.航天航空用难熔金属材料的研究进展 [J].稀有金属材料与工程,2011,40(10):1871-1875.

[67] LIU C M,WANG H M,ZHANG S Q,et al.Microstructure and oxidation behavior of new refractory high entropy alloys[J].Journal of Alloys and Compounds,2014,583:162-169.

[68] PRAVEEN S,KIM H S.High-entropy alloys:potential candidates for high-temperature applications - an overview[J].Advanced Engineering Materials,2018,20(1):1700645.

[69] LI Z M,PRADEEP K G,DENG Y,et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J].Nature,2016,534(7606):227-230.

[70] GUO N N,WANG L,LUO L S,et al.Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy[J].Materials & Design,2015,81:87-94.

[71] 李春玲,马跃,郝家苗,等.难熔高熵合金的研究进展及应用 [J].精密成形工程,2017,9(6):117-124.

[72] SENKOV O N,SENKOVA S V,WOODWARD C,et al.Low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system:Microstructure and phase analysis[J].Acta Materialia,2013,61(5):1545-1557.

[73] LI C,ZHAO M,LI J C,et al.B2 structure of high-entropy alloys with addition of Al[J].Journal of Applied Physics,2008,104(11):113504.

[74] SENKOV O N,ISHEIM D,SEIDMAN D N,et al.Development of a refractory high entropy superalloy[J].Entropy,2016,18(3):102.

[75] JENSEN J K.Characterization of a high strength,refractory high entropy alloy,AlMo0.5NbTa0.5TiZr[D].The Ohio State University,2017.

[76] 刘张全,乔珺威.难熔高熵合金的研究进展 [J].中国材料进展,2019,38(8):768-774.

[77] ZHAO J,WESTBROOK J H.Ultrahigh-temperature materials for jet engines[J].MRS Bulletin,2003,28(9):622-630.

[78] 宁远涛.γ/γ’沉淀强化型铂族金属高温超合金 [J].贵金属,2010,31(1):57-62.

[79] 宁远涛.铂族金属高温固溶强化型合金 [J].贵金属,2009,30(2):51-56.

[80] 贾志华,郑晶,王轶,等.高温强化铂合金研究进展 [J].贵金属,2017,38(S1):38-44.

[81] 赵昆瑜,黎鼎鑫.微量稀土提高铂的高温持久强度的机理 [J].贵金属,1993,14(2):9-12.

[82] SHA J B,YAMABE-MITARAI Y,HARADA H.Microstructural evaluation and mechanical properties of Ir-Hf-Zr ternary alloys at room and high temperatures[J].Intermetallics,2006,14(10/11):1364-1369.

[83] YU W,ZHOU Y X,CHONG X Y,et al.Investigation on elastic properties and electronic structure of dilute Ir-based alloys by first-principles calculations[J].Journal of Alloys and Compounds,2021,850:156548.

[84] 吕连灏,陈敬超,陈蓉,等.贵金属高温合金的研究现状及展望 [J].材料导报,2012,26(7):114-117.

[85] YU X H,YAMABEMITARAI Y,NAKAZAWA S,et al.Drastically improved ductility of an Ir-base alloy by mixing Ir-Nb with Ni-Al[J].Materials Science and Engineering:A,2002:481-485.

[86] 向长淑,葛渊,张晗亮,等.耐超高温铱合金强韧化技术研究进展 [J].材料导报,2009,23(13):7-10.

[87] 熊易芬.弥散强化铂的材料特性和应用研究 [J].贵金属,1993,14(4):63-69.

[88] 陈孟成,霍晓,高阳,等.高温涂层的研究和发展 [J].材料工程,1999,27(6):40-42.

[89] 汪欣,李争显,杜继红,等.难熔金属表面高温防护涂层研究进展与技术展望 [J].装备环境工程,2016,13(3):1-11.

[90] ZENG Y,WANG D,XIONG X,et al.Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26for oxidizing environments up to 3,000 ℃[J].Nature Communications,2017,8:15836.

[91] CLARKE D R,LEVI C G.Materials design for the next generation thermal barrier coatings[J].Annual Review of Materials Research,2003,33(1):383-417.

[92] SHIAN S,SARIN P,GURAK M,et al.The tetragonal-monoclinic,ferroelastic transformation in yttrium tantalate and effect of zirconia alloying[J].Acta Materialia,2014,69:196-202.

[93] WANG J,ZHOU Y Y,CHONG X Y,et al.Microstructure and thermal properties of a promising thermal barrier coating:YTaO4[J].Ceramics International,2016,42(12):13876-13881.

[94] WANG J,CHONG X Y,ZHOU R,et al.Microstructure and thermal properties of RETaO4 (RE = Nd,Eu,Gd,Dy,Er,Yb,Lu) as promising thermal barrier coating materials[J].Scripta Materialia,2017,126:24-28.

[95] WANG J,WU F S,ZOU R A,et al.High-entropy ferroelastic rare-earth tantalite ceramic:(Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4[J].Journal of the American Ceramic Society,2021,104(11):1.

[96] CHONG X Y,HU M Y,WU P,et al.Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M=Fe,Cr,W,Mo;X=C,B) by multialloying[J].Acta Materialia,2019,169:193-208.

[97] 杨路平,周长灵,王艳艳,等.超高温材料的研究进展 [J].佛山陶瓷,2017,27(10):1-7.

[98] 徐强,张幸红,韩杰才,等.先进高温材料的研究现状和展望 [J].固体火箭技术,2002,25(3):51-55.

[99] FAHRENHOLTZ W G,HILMAS G E,TALMY I G,et al.Refractory diborides of zirconium and hafnium[J].Journal of the American Ceramic Society,2007,90(5):1347-1364.

基本信息:

DOI:10.16112/j.cnki.53-1223/n.2021.06.422

中图分类号:V25

引用信息:

[1]干梦迪,种晓宇,冯晶.航空航天高温结构材料研究现状及展望[J].昆明理工大学学报(自然科学版),2021,46(06):24-36.DOI:10.16112/j.cnki.53-1223/n.2021.06.422.

基金信息:

国家自然科学基金重大研究计划项目(91960103); 云南省重大科技专项基金-稀贵金属材料基因工程(202002AB080001-1)

检 索 高级检索