nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.50 160-172
基于改进灰靶理论的驾驶模拟器人-车-路-环系统评价
基金项目(Foundation): 国家自然科学基金项目(72261021)
邮箱(Email): liuyh1226@126.com;
DOI: 10.16112/j.cnki.53-1223/n.2025.02.482
摘要:

汽车驾驶模拟系统已广泛应用于交通领域的科学研究,模拟系统有效性高低是其应用发展的重要前提.驾驶模拟系统整体有效性研究是反映其应用可靠性状态的必要手段,为综合考虑道路交通人-车-路-环系统对于驾驶模拟系统的有效性,本研究以模拟系统为中心,分析“车”“人-车”“车-路”“人-车-路-环”交互影响有效性典型要素,基于人机工效、车辆动力学、驾驶感知等理论构建评价指标体系;鉴于评价指标体系繁多复杂的特点,本研究采用灰靶理论构建评价模型,并通过改进粒子群算法提高传统灰靶模型的分辨能力与评价结果精确性;选取国内某驾驶模拟系统实例,搭建真实和虚拟实验场景,获取评价参数数据,以理论值或实车测量值为校标,模拟系统参数值为模型输入,得到该模拟系统综合有效性为中等,其中人机工效有效性良好,图文视认有效性较差,车辆动力学、道路感知、风险感知有效性为中等;结合各评价主观分析表明,评价结果基本一致.本研究为模拟系统综合有效性等方面研究及优化提供思路与方法,助力驾驶模拟系统在智能交通等领域的应用.

Abstract:

Automotive driving simulation systems have been widely used in scientific research in the transportation field, and the effectiveness of these systems is a critical prerequisite for their application and development. Research on the overall effectiveness of driving simulation systems is essential to reflect their reliability in practical applications. To comprehensively consider the impact of the human-vehicle-road-environment system on the effectiveness of driving simulation systems, this study focuses on the simulation system and analyzes typical factors affecting the effectiveness of interactions in “vehicle”, “human-vehicle”, “vehicle-road”, and “human-vehicle-road-environment” systems. An evaluation index system is constructed based on theories of human-machine ergonomics, vehicle dynamics, and driving perception. Given the complexity and multiplicity of the evaluation index system, the grey target theory is adopted to build an evaluation model, and the traditional grey target model is improved using a particle swarm optimization algorithm to enhance its discriminative ability and evaluation accuracy. A domestic driving simulation system is selected as a case study, and real and virtual experimental scenarios are established to collect evaluation parameter data. The simulation system parameters are compared with theoretical values or actual vehicle measurements. The results show that the overall effectiveness of the simulation system is moderate, with good effectiveness in human-machine ergonomics, poor effectiveness in graphic recognition, and moderate effectiveness in vehicle dynamics, road perception, and risk perception. Subjective analysis of each evaluation aspect indicates that the evaluation results are consistent. This study provides insights and methods for research and optimization of the comprehensive effectiveness of simulation systems, supporting the application of driving simulation systems in fields such as intelligent transportation.

参考文献

[1] WYNNE R A,BEANLAND V,SALMON P M.Systematic review of driving simulator validation studies[J].Safety Science,2019,117:138-151.

[2] HESS S,CHOUDHURY C F,BLIEMER M C J,et al.Modelling lane changing behaviour in approaches to roadworks:Contrasting and combining driving simulator data with stated choice data[J].Transportation Research Part C:Emerging Technologies,2020,112:282-294.

[3] IGOSHINA E,RUSSO F A,HAYCOCK B,et al.Comparing the effect of airflow direction on simulator sickness and user comfort in a high-fidelity driving simulator[C]//14th International Conference on Virtual Augmented and Mixed Reality,June 26-July 1,2022,Electer Network Springer,2022(13318):208-220.

[4] CALVI A,PETRELLA C.An evaluation of the effectiveness of countermeasures for improving the safety of dilemma zones:A driving simulator study[J].Transportation Research Part F:Traffic Psychology and Behaviour,2022,87:295-312.

[5] KHODA BAKHSHI A,AHMED M M.Bayesian extreme value analysis of kinematic-based surrogate measure of safety to detect crash-prone conditions in connected vehicles environment:A driving simulator experiment[J].Transportation Research Part C:Emerging Technologies,2022,136:103539.

[6] HIMMELS C,VENROOIJ J,PARDUZI A,et al.The bigger the better?Investigating the effects of driving simulator fidelity on driving behavior and perception[J].Transportation Research Part F:Traffic Psychology and Behaviour,2024,101:250-266.

[7] PAWAR N M,VELAGA N R,SHARMILA R B.Exploring behavioral validity of driving simulator under time pressure driving conditions of professional drivers[J].Transportation Research Part F:Traffic Psychology and Behaviour,2022,89:29-52.

[8] 黄万友,金晓悦,褚瑞霞,等.自动驾驶汽车爬坡模拟试验台研究与设计[J/OL].机械设计与制造,2024:1-10.(2024-12-30).https://doi.org/10.19356/j.cnki.1001-3997.20241227.046.HUANG W Y,JIN X Y,ZHU R X,et al.Research and design of climbing simulation test bench for autonomous vehicles[J/OL].Machinery Design & Manufacture,2024:1-10.(2024-12-30).https://doi.org/10.19356/j.cnki.1001-3997.20241227.046.

[9] 陈亮,熊坚,郭凤香,等.基于视觉及认知的驾驶模拟器图像标定方法[J].中国公路学报,2017,30(1):129-135.CHEN L,XIONG J,GUO F X,et al.Image calibration method of driving simulator based on vision and cognition[J].China Journal of Highway and Transport,2017,30(1):129-135.

[10] KARIMI A,BASSANI M,BOROUJERDIAN A,et al.Investigation into passing behavior at passing zones to validate and extend the use of driving simulators in two-lane roads safety analysis[J].Accident Analysis & Prevention,2020,139:105487.

[11] HUSSAIN Q,ALHAJYASEEN W K M,PIRDAVANI A,et al.Speed perception and actual speed in a driving simulator and real-world:A validation study[J].Transportation Research Part F:Traffic Psychology and Behaviour,2019,62:637-650.

[12] CALVI A,D’AMICO F,FERRANTE C,et al.A driving simulator validation study for evaluating the driving performance on deceleration and acceleration lanes[J].Advances in Transportation Studies,2020,50:67-80.

[13] SUN Q Y,GUO Y S,LIU Y T,et al.Comparing the effects of visual distraction in a high-fidelity driving simulator and on a real highway[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(4):3738-3747.

[14] GROEGER J A,MURPHY G.Driver performance under simulated and actual driving conditions:Validity and orthogonality[J].Accident Analysis & Prevention,2020,143:105593.

[15] ZHANG S Y,ZHAO C,ZHANG Z R,et al.Driving simulator validation studies:A systematic review[J].Simulation Modelling Practice and Theory,2025,138:103020.

[16] 李茹,马育林,田欢,等.基于熵值和G1法的自动驾驶车辆综合智能定量评价[J].汽车工程,2020,42(10):1327-1334.LI R,MA Y L,TIAN H,et al.Comprehensive intelligent quantitative evaluation of autonomous vehicle based on entropy and G1 methods[J].Automotive Engineering,2020,42(10):1327-1334.

[17] 高玉祥,董晓峰,程建军.基于云模型和改进TOPSIS的风沙地区线路方案优选方法研究[J].铁道科学与工程学报,2023,20(2):526-536.GAO Y X,DONG X F,CHENG J J.Optimization method of railway route scheme in wind-sand areas based on cloud model and improved TOPSIS[J].Journal of Railway Science and Engineering,2023,20(2):526-536.

[18] 吴元金,刘永胜,尹龙,等.基于灰色聚类的铁路隧道工程建造过程低碳评价研究[J].西安理工大学学报,2023,39(3):353-359.WU Y J,LIU Y S,YIN L,et al.Low carbon assessment on railroad tunnel project construction process by the grey clustering method[J].Journal of Xi’an University of Technology,2023,39(3):353-359.

[19] 孙乾洋,周利,丁仕风,等.基于人工神经网络的极地船舶冰阻力预报方法[J].上海交通大学学报,2024,58(2):156-165.SUN Q Y,ZHOU L,DING S F,et al.An artificial neural network-based method for prediction of ice resistance of polar ships[J].Journal of Shanghai Jiao Tong University,2024,58(2):156-165.

[20] TOKTASSYNOVA N,FOURATI H,SULEIMENOV B.Application of grey system theory to phosphorite sinter process:From modeling to control[J].Asian Journal of Control,2021,23(1):13-22.

[21] NGUYEN N T,LE V B,TRAN T T.Vietnamese real estate corporations' performance using the hybrid model of data envelopment analysis and grey system theory[J].Neural Computing and Applications,2021,33(24):17209-17222.

[22] 陈亮.基于驾驶人交通特性的汽车驾驶模拟器系统有效性研究[D].昆明:昆明理工大学,2021.CHEN L.Research on the validation of vehicle driving simulator based on driver's traffic characteristics[D].Kunming:Kunming University of Science and Technology,2021.

[23] 徐进,张高峰,唐勇,等.基于实车路试的高速公路减速标线运行效果研究[J].安全与环境学报,2024,24(4):1450-1459.XU J,ZHANG G F,TANG Y,et al.Investigation on the operation effect of expressway deceleration marking based on field driving test[J].Journal of Safety and Environment,2024,24(4):1450-1459.

[24] 及红霞.基于改进灰靶理论的变压器健康状态评估[D].河北:华北电力大学,2010.JI H X.Condition evaluation of power transformer based on improved grey-target[D].Hebei:North China Electric Power University,2010.

[25] 邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.

[26] 董立立,朱煜,黄道,等.灰关联分析及其在装备故障诊断中的应用[J].华东理工大学学报(自然科学版),2008,34(4):563-567+597.DONG L L,ZHU Y,HUANG D,et al.Grey relevancy analysis and its application to equipment fault diagnosis[J].Journal of East China University of Science and Technology(Natural Science Edition),2008,34(4):563-567+597.

[27] Eberhart,SHI Y H.Particle swarm optimization:Developments,applications and resources[C]//Proceedings of the 2001 Congress on Evolutionary Computation,May 27-30,2001,Seoul,Korea (South).IEEE,2001:81-86.

[28] 张珊珊,李方义,贾秀杰,等.面向变速箱磨损状态评估的灰靶模型优化[J].计算机集成制造系统,2019,25(9):2159-2166.ZHANG S S,LI F Y,JIA X J,et al.Optimization of grey target model for evaluation of wear state of gearbox[J].Computer Integrated Manufacturing Systems,2019,25(9):2159-2166.

[29] VAN DEN BERGH F.An analysis of particle swarm optimizers[M].The Republic of South Africa:University of Pretoria,2001.

[30] HAN F,ALKHAWAJI R N,SHAFIEEZADEH M M.Evaluating sustainable water management strategies using TOPSIS and fuzzy TOPSIS methods[J].Applied Water Science,2024,15(1):4.

基本信息:

DOI:10.16112/j.cnki.53-1223/n.2025.02.482

中图分类号:U491.25

引用信息:

[1]陈亮,李明丽,张森等.基于改进灰靶理论的驾驶模拟器人-车-路-环系统评价[J].昆明理工大学学报(自然科学版),2025,50(02):160-172.DOI:10.16112/j.cnki.53-1223/n.2025.02.482.

基金信息:

国家自然科学基金项目(72261021)

检 索 高级检索