nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 05, v.49 1-12
Se掺杂的反钙钛矿InNNi3催化剂用于高效电催化CO2还原反应
基金项目(Foundation): 国家自然科学基金项目(U2202251); 云南省自然科学基金项目(202101BE070001-017)
邮箱(Email): kongzhai.li@aliyun.com;
DOI: 10.16112/j.cnki.53-1223/n.2024.05.201
摘要:

反钙钛矿代表了一类新兴的功能材料,具有明确的立方晶格晶体结构,为研究多相催化中的构效关系提供了一个很好的实体。在此,合成了In基反钙钛矿氮化物InNNi3,并首次探讨了其在电催化二氧化碳(CO2RR)还原中的催化性能。研究发现:将Se引入InNNi3中可以取代部分正八面体Ni3N中的N的位点,因为较大的离子半径的差距造成晶格结构被破环,从而暴露出更多In活性位点,显著提高催化剂电化学活性;InNNi3/Se=2∶1催化剂在-1.1 V vs. RHE的电位下电流密度高达180 mA/cm2,在-0.754 V vs. RHE电位下法拉第效率高达91.3%。这项工作首次探讨了InNNi3/Se在CO2RR中超高的导电性和选择性,为In基反钙钛矿氮化物材料作为电催化CO2还原催化剂提供了可行的策略。

Abstract:

Anti-perovskite is a new type of functional material with a well-defined cubic lattice structure, making it ideal for studying conformational relationships in multiphase catalysis. In this study, we synthesized In-based anti-perovskite nitride, InNNi3, and investigated its performance in electrocatalytic carbon dioxide reduction(CO2RR) for the first time. Our findings revealed that introducing selenium(Se) into InNNi3 can replace some nitrogen(N) atoms in the ortho-octahedral Ni3N structure. This substitution leads to lattice disruptions due to the larger ionic radii of Se, which in turn exposes more active In sites and significantly enhances the electrochemical activity of the catalyst. Specifically, the InNNi3/Se catalyst with a ratio of 2∶1 achieved a high current density of 180 mA/cm2 at a potential of-1.1 V vs. RHE. Additionally, it exhibited a Faraday efficiency of up to 91.3% at a potential of-0.754 V vs. RHE. This work demonstrates the ultra-high conductivity and selectivity of InNNi3/Se in CO2RR, offering a promising strategy for using In-based anti-perovskite nitride materials as electrocatalytic CO2 reduction catalysts.

参考文献

[1] NING H H,LI Y D,ZHANG C J.Recent progress in the integration of CO2 capture and utilization[J].Molecules,2023,28(11):4500.

[2] ZHANG R,WARREN J J.Recent developments in metalloporphyrin electrocatalysts for reduction of small molecules:Strategies for managing electron and proton transfer reactions[J].ChemSusChem,2021,14(1):293-302.

[3] GUAN J Y,BERLINGER S A,LI X Z,et al.Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals[J].Journal of Biotechnology,2017,245:21-27.

[4] ATSONIOS K,PANOPOULOS K D,KAKARAS E.Thermocatalytic CO2 hydrogenation for methanol and ethanol production:Process improvements[J].International Journal of Hydrogen Energy,2016,41(2):792-806.

[5] YANG H Q,XU Z H,FAN M H,et al.Progress in carbon dioxide separation and capture:A review[J].Journal of Environmental Sciences (China),2008,20(1):14-27.

[6] XIANG Q J,CHENG B,YU J G.Graphene-based photocatalysts for solar-fuel generation[J].Angewandte Chemie (International Ed.in English),2015,54(39):11350-11366.

[7] CHEN Y H,LI C W,KANAN M W.Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J].Journal of the American Chemical Society,2012,134(49):19969-19972.

[8] MISTRY H,RESKE R,ZENG Z H,et al.Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles[J].Journal of the American Chemical Society,2014,136(47):16473-16476.

[9] MORLANéS N,TAKANABE K,RODIONOV V.Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst[J].ACS Catalysis,2016,6(5):3092-3095.

[10] LIN L,HE X Y,ZHANG X G,et al.A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate[J].Angewandte Chemie International Edition,2023,62(3):2214959.

[11] LI J Y,ZHU M H,HAN Y F.Recent advances in electrochemical CO2 reduction on indium-based catalysts[J].ChemCatChem,2021,13(2):514-531.

[12] ZHANG J W,ZENG G M,CHEN L L,et al.Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst:Insights into the active sites[J].Nano Research,2022,15(5):4014-4022.

[13] WANG S,WANG Y,HUO J M,et al.Multivariate indium-organic frameworks for highly efficient carbon dioxide capture and electrocatalytic conversion[J].Inorganic Chemistry Frontiers,2023,10(1):158-167.

[14] LAI K T,ANTONYSHYN I,PROTS Y,et al.Anti-perovskite Li-battery cathode materials[J].Journal of the American Chemical Society,2017,139(28):9645-9649.

[15] DAWSON J A,FAMPRIKIS T,JOHNSTON K E.Anti-perovskites for solid-state batteries:Recent developments,current challenges and future prospects[J].Journal of Materials Chemistry A,2021,9(35):18746-18772.

[16] LU Z H,LIU J P,CIUCCI F.Superionic conduction in low-dimensional-networked anti-perovskites[J].Energy Storage Materials,2020,28:146-152.

[17] ZHANG J X,ZHAO X,DU L,et al.Antiperovskite nitrides CuNCo3-xVx:Highly efficient and durable electrocatalysts for the oxygen-evolution reaction[J].Nano Letters,2019,19(10):7457-7463.

[18] SU H,TANG Y Q,SHEN H M,et al.Insights into antiperovskite Ni3In1-xCuxN multi-crystalline nanoplates and bulk cubic particles as efficient electrocatalysts on hydrogen evolution reaction[J].Small,2022,18(12):2105906.

基本信息:

DOI:10.16112/j.cnki.53-1223/n.2024.05.201

中图分类号:O643.36;X701

引用信息:

[1]盖伊光,郭浩然,徐宗浩等.Se掺杂的反钙钛矿InNNi_3催化剂用于高效电催化CO_2还原反应[J].昆明理工大学学报(自然科学版),2024,49(05):1-12.DOI:10.16112/j.cnki.53-1223/n.2024.05.201.

基金信息:

国家自然科学基金项目(U2202251); 云南省自然科学基金项目(202101BE070001-017)

检 索 高级检索